
Figure 1 - Boundaries of the Uncertainty Representation and Reasoning Evaluation Framework [3]. 
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Abstract— Current advances operational information fusion systems 

(IFSs) require common semantic ontologies for collection, storage, 

and access to multi intelligence information. One example is the 

connections between physics-based (e.g. video) and text-based (e.g. 

reports) describing the same situation. Situation, user, and mission 

awareness are enabled through a common ontology. In this paper, we 

utilize the uncertainty representation and reasoning evaluation 

framework (URREF) ontology as a basis for describing wide-area 

motion imagery (WAMI) analysis to determine uncertainty attributes. 

As part of the Evaluation of Technologies for Uncertainty 

Representation Working Group (ETURWG), both the URREF and a 

WAMI challenge problem are available for research purposes from 

which we describe the URREF, a exemplar schema to link physics-

based and text-based uncertainty representations, and explore an 

example from WAMI exploitation for a common uncertainty 

demonstration.  

Keywords: Component, Information Fusion, Performance 

Evaluation, Uncertainty Reasoning, Knowledge Representation, 

Ontology, Measures of Effectiveness. 

I.  INTRODUCTION  

Semantic ontologies [1] enable a framework for many 
applications such as command and control, emergency 
response, and information sharing [2]. Information sharing, and 
the inherent policies within an architecture, enable data to be 
fused into actionable knowledge. A key to information fusion is 
to reduce uncertainty that may come from many sources that 
require a unified, common, and standardized semantic 
understanding. Figure 1 [3], shows the relations between 

sensed and reported world information from which uncertainty 
representation and uncertainty reasoning are required for 
machine processing and user interaction, refinement, and 
understanding [4, 5, 6, 7].       

The evaluation of how uncertainty is processed is 
dependent on the system-level metrics such as timeliness, 
accuracy, confidence, throughput, and cost [8], which also are 
information fusion quality of service (QoS) metrics [9].  Future 
large complex information fusion systems will require 
performance evaluation [10] and understanding of the 
connections between various metrics [11]. It is a goal of the 
Evaluation of Technologies for Uncertainty Representation 
Working Group (ETURWG) to formulate, test, and evaluate 
different methods of a semantic uncertainty ontology that is 
common, universal, and standardized. 

Information fusion system-level metrics include timeliness 
(how quickly the system can come to a conclusion within a 
specified precision level), accuracy (where can an object be 
found for a specified localization level), and confidence (what 
level of a probability match for a defined recall level).Clearly, 
different choices in uncertainty representation approaches will 
affect the achievable timeliness, accuracy, and confidence of a 
system, and therefore must be considered when evaluating both 
the system’s performance as a whole [12] and the specific 
impact of the uncertainty handling approach. Yet, when 
evaluating timeliness (or any other system-level metrics), one 
will likely find some factors not directly related to the handling 
of uncertainty itself, such as object tracking and identification 
report updates (i.e., Level 1 fusion) [13, 14, 15], situation and 
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threat assessment relative to scenario constraints (i.e., Level 2/3 
fusion) [16], overall system architecture (e.g. centralized, 
distributed, etc.) [12], data management processes and 
feedback / input control processes (i.e., Level 4 fusion 
considerations) [17], and user-machine coordination based on 
operating systems (i.e., Level 5 fusion) [18], and others.  

Key to the various Data Fusion Information Group (DFIG) 
[19] levels of information fusion is evaluation. For example, 
there have been efforts in comprehensive tracking [20, 21], 
object classification [22], and situation awareness evaluation 
[23] which focus on measures of performance (MOPs).  Future 
evaluations will include high-level information Measures of 
Effectiveness (MOEs) [24] that include uncertainty 
characterization [25]. 

The ETUWRG has developed both an uncertainty 
framework ontology, but also has a series of use cases. One use 
case is that of Wide-Area Motion Imagery (WAMI) for 
developments in Level 1 fusion [26, 27, 28, 29]. Other 
computer vision working groups [30] are exploring semantic 
technology with datasets that are not necessary focused on 
uncertainty, but have a rich set of ontologies and datasets for 
collaboration and comparisons.   

The paper investigates the URREF for WAMI tracking. 
Section II explores the issues of uncertainty characterization 
and Section III, the uncertainty evaluation framework. Section 
IV presents a WAMI tracking use case using the URREF for 
timeliness, accuracy, and confidence. Section V provides and 
discussion and Section VI conclusions.  

II. THE UNCERTAINTY REPRESENTATION PROBLEM 

The Information Fusion community envisions effortless 
interaction between humans and computers, seamless 
interoperability and information exchange among applications, 
and rapid and accurate identification and invocation of 
appropriate services. As work with semantics and services 
grows more ambitious, there is increasing appreciation of the 
need for principled approaches to representing and reasoning 
under uncertainty. Here, the term "uncertainty" is intended to 
encompass a variety of aspects of imperfect knowledge, 
including incompleteness, inconclusiveness, vagueness, 
ambiguity, and others. The term "uncertainty reasoning" is 
meant to denote the full range of methods designed for 
representing and reasoning with knowledge when Boolean 
truth-values are unknown, unknowable, or inapplicable. 
Commonly applied approaches to uncertainty reasoning 
include probability theory [31], expert systems [32], fuzzy 
logic, subjective logic [33, 34], Dempster-Shafer theory, DSmT 
[35], and numerous other techniques. 

To illustrate the challenges of evaluating uncertainty 
representation and reasoning in information systems, we 
consider below a few reasoning challenges faced within the 
World Wide Web domain that could be addressed by reasoning 
under uncertainty [1]. Uuncertainty is an intrinsic feature of 
many of the required tasks, and a full realization of the World 
Wide Web as a source of processable data and information 
management services [3] demands formalisms capable of 
representing and reasoning under uncertainty such as:  

• Automated agents (e.g., to exchange Web information) 

• Uncertainty-laden data. (e.g., terrain information) 

• Non-sensory collected information (e.g., human sources). 

• Dynamic composability (e.g., Web Services). 

• Information extraction (e.g., indexing from large databases)  

These problems are all related with information fusion, 
involve both textual-based [36] and physics-based [37] data, 
and can be easily extrapolated to represent the more general 
classes of problems found in the sensor, data, and information 
fusion domain.  A recent example of hard-soft fusion uses a 
controlled natural language (CNL) for data-to-decisions [38].  

III. THE UNCERTAINTY EVALUATION FRAMEWORK 

The uncertainty representation and reasoning evaluation 
framework (URREF) includes both hard sources (e.g. imaging, 
radar, video, etc.) and soft sources (HUMINT reports, software 
alerts, etc.) which requires integration for uncertainty MOEs.  

Effectiveness relates to a system’s capability to produce an 
effect.  Many benefits of fusion include providing locations of 
events, extending coverage, and reducing ambiguity and false 
alarms. The goal for the IFS is to support users in their tasks 
whether providing refined information, reducing time and 
workload, or determining completeness, accuracy, and quality 
in task completion. Effectiveness includes efficiency: doing 
things in the most economical way (good input to output ratio), 
efficacy: getting things done, (i.e., meeting objectives), 
correctness: doing "right" things, (i.e., setting right thresholds 
to achieve an overall goal - the effect). The MOEs support 
system-level management and design verification, validation, 
testing, and evaluation. The URREF output step involves the 
assessment of how information on uncertainty is presented to 
the users and, therefore, how it impacts the quality of their 
decision-making process.  

Key aspects of measuring effectiveness come from quality 
of service (QoS) metrics that can be utilized for hard-soft 
semantic information fusion [39, 40, 41, 42] Another 
perspective includes quality of information, or rather 
information quality (IQ), metrics to combine different types of 
uncertainty to an established quality. IQ metrics establish user 
semantic content as a schema or ontology [43] of uncertainty 
analysis such as a popular method of probabilistic ontologies 
[44]. Together, these metrics and representations support a 
formal theory of high-level information fusion [2, 45]. 

The URREF ontology, whose main concepts are depicted in 
Figure 2 below for the uncertainty of a Thing, is a first step 
towards building a semantic standard. The core of the ontology 
is the Criteria class, which drives the development of the 
elements of the subclasses (Section B). The Uncertainty 
Classes were either taken or adapted from the Uncertainty 
Ontology developed by the W3C’s URW3-XG [1]. The 
ontology must also be used as a high-level reference for 
defining the actual evaluation criteria items that will comprise a 
comprehensive uncertainty evaluation framework. Other main 
class definitions include: 



 
Figure 2 – The URREF ontology main classes. 

Figure 3 – URREF Ontology: Uncertainty Type Class. 

• A source class is the origin of the information. A physical 
sensor is one important example of a source; where natural 
language inputs from a human is another. 

• A Sentence class captures an expression in some logical 
language that evaluates to a truth-value (e.g., formula, 
axiom, assertion).  

• A Uncertainty Derivation class refers to the way it can be 
assessed which is decomposed into: 

1) Objective Subclass: (e.g., factual and repeatable 
derivation process). 

2)  Subjective Subclass: (e.g., a subject matter expert's 
(SME’s) estimation).  

• A Uncertainty Model class contains information on the 
mathematical theories for the representing and reasoning 
with the uncertainty types. 

A. Uncertainty Type Class 

Uncertainty Type is a concept that focuses on underlying 
characteristics of the information that make it uncertain. Its 
subclasses are Ambiguity, Incompleteness, Vagueness, 
Randomness, and Inconsistency, all depicted in Figure 3 below. 
These subclasses were based on the large body of work on 
evidential reasoning by David Schum [31]. 

B. Criteria Class 

The Criteria Class is the main class of the URREF ontology, 
and it is meant to encompass all the different aspects that must 
be considered when evaluating information uncertainty 
handling in multi-sensor fusion systems. Figure 4 depicts the 
Criteria Class and its subclasses: 

1) Input Criteria: encompasses the criteria that directly affect 
the way evidence is input to the system. It focuses on the 
source of input data or evidence, which can be tangible 
(sensing or physical), testimonial (human), documentary, or 
known missing. 

• Relevance to Problem assesses how a given uncertainty 
representation is able to capture why a given input is 
relevant to the problem and what was the source of the 
data request.  

• Weight or Force of Evidence measures how a given 
uncertainty representation is able to capture the degree 
to which a given input can affect the processing and 
output of the fusion system. Ideally, the weight should 
be an objective assessment and the representation 
approach must provide a means to measure the degree 
of impact of an evidence item with a numerical scale 
such as value of information [24]. 

• Credibility, also known as believability, comprises the 
aspects that directly affect a sensor (soft or hard) in its 
ability to capture evidence. Its subclasses are Veracity, 
Objectivity, Observational Sensitivity, and Self-
Confidence. 

2) Representation Criteria: encompasses the criteria that 
directly affect the way information is captured by and 
transmitted through the system. These criteria can also be 
called interfacing or transport criteria, as they relate to how 
the representational model transfers, passes, and routes 
information within the system.  

• Evidence Handling: is a subclass of representation criteria 
that apply particularly to the ability of a given 
representation of uncertainty to capture specific 
characteristics of incomplete evidence that are available 
to or produced by the system.  The main focus is on 
measuring the quality of the evidence by assessing how 
well this evidence is able to support the development of a 
conclusion. It has subclasses Conclusiveness, 
Ambiguousness, Completeness, Reliability, and 
Dissonance. 

• Knowledge Handling: includes criteria intended to measure 
the ability of a given uncertainty representation technique 
to convey knowledge. Its subclasses are Compatibility 
and Expressiveness (which is further divided into the 
subclasses Assessment, Adaptability, and Simplicity) 

 3) Reasoning Criteria: contains criteria that directly affect the 
way the system transforms its data into knowledge. These 
can also be called process or inference criteria, as they deal 
with how the uncertainty model performs operations with 
information. It has the following subclasses: 



 
Figure 4 – URREF Ontology: Criteria Class. 

• Correctness measures of the ability of the inferential 
process to produce correct results. In cases where there is 
no ground truth to establish a correct answer (including a 
simulated ground truth), the representation technique can 
still be evaluated in terms of how its answers align with 
what is expected from a gold standard (e.g. SMEs, 
documentation, etc.). 

• Consistency assesses of the ability of the inferential process 
to produce the same results when given the same data 
under the same conditions. 

• Scalability evaluates how a representational technique 
performs on a class of problems as the amount of data or 
the problem size grows very large. Scalability could be 
broken down into additional sub-criteria. 

• Computational Cost computes the number of resources 
required by a given representational technique to produce 
its results. 

• Performance includes metrics to assess the contribution of 
the representational model toward meeting the functional 
requirements of an information fusion system. Other 
system architecture factors also affect these metrics. This 
criterion is divided into subclasses Timeliness and 
Throughput. 

4) Output Criteria relates to the system’s results and its ability 
to communicate it to its users in a clear fashion. It has the 
following subclasses: 

• Quality serves to assess the informational quality of the 
system’s output. It includes Accuracy and Precision as 
subclasses. It is common to see in the literature the 

same concepts with different names. For example, 
accuracy sometimes is used as a synonym of precision; 
sometimes the terms are used with different meanings. 
Indeed, accuracy and precision can be inversely 
related. As one makes the granularity coarser, one can 
expect that the system will have a better accuracy. 
Precision can also be used to determine bounds on the 
certainty of the reported result. 

• Interpretation refers to the degree to which the 
uncertainty representation and reasoning can be used to 
guide assessment, to understand the conclusions of the 
system and use them as a basis for action, and to 
support the rules for combining and updating 
measures. 

The above concepts are being explored within the 
ETURWG, which is making use of this ontology (shown in 
Figure 4) to support the development of uncertainty evaluation 
criteria for a set of information fusion use cases. The interested 

reader should refer to the group’s website for more specific 
details (http://eturwggmu.edu). Note that the URREF ontology 
is not supposed to be a definitive reference for evaluation 
criteria, but simply an established baseline that is coherent and 
sufficient for its purposes. This approach privileges the 
pragmatism of having a good solution against having an “ideal” 
but usually unattainable solution. For instance, a definitive 
reference would involve having universally accepted 
definitions and usage for terms such as "Precision." This is 
clearly infeasible. The approach also takes into consideration 
that more important than naming a concept is to ensure that it is 
represented clearly and distinctly within the ontology so to 
ensure the consistency for such applications as hard-soft fusion.  



To assure utility and acceptability of the URREF ontology, 
most of its concepts have been drawn from seminal work in 
related areas such as uncertainty representation, evidential 
reasoning, and performance evaluation. The ontology has built 
on the URW3 uncertainty ontology [1]. Also, the structure and 
viewpoint adopted in the ontology development have been 
tuned to addressing the uncertainty evaluation problem and its 
associated perspective (e.g. how information is handled within 
a fusion system). Next, we present simultaneous tracking and 
identification application using the URREF. 

IV. EXAMPLE – WAMI 

Characterizing the uncertainty in IF processes is not a new 
research topic. An example is the Semantic Web as part of the 
Web Ontology Language (OWL) (http://www.w3.org/TR/owl-
guide/). OWL operational semantics support message formats 
(e.g. XML schema) and protocol specifications for an 
ontology knowledge representation. With a knowledge 
representation, uncertainty reasoning can be determined from 
the message format. 

A. Schema 

A schema for image processing is shown in Figure 5 for the 
Cursor on Target (CoT) program [46]. As detailed, the schema 
provides target type and identification (ID) allegiance, time 
stamps, and coordinate locations (much as the DFIG level 1 
object assessment information of object track and ID 
information). While the schema is simple, and worked well 
[47], for purposes of information transmission, processing, 
exploitation, and dissemination, future developments could 
include uncertainty fields from the URREF ontology. It is 
important to research which semantic content is most relevant 
for operational information fusion management and systems 
design. 
  

 
Figure 5 – Cursor on Target Schema [46] 

In order to determine what ontology content can be added to 
such a message passing schema, there are three issues (1) what, 
(2) how much, and (3) which ones. For the case of physics-
based (video) and textual-based reports, we need to determine 
what semantic content could be useful. One simple case is that 
either  a human analyst can report a “friendly” in the uid field, 
or a machine tracker could extract the information from the 
video to update the uid field of “friendly”. One example of 
“friendly” could be from extracted text and video exploitation 
of a blue vehicle. What is obviously missing from the CoT 
schema is some notion of uncertainty with the measurements 
and information as to the confidence, timeliness, and position 

accuracy. While the entire URREF cannot, and should not, be 
considered for the schema updates, as a message passing 
service for the ontology, the first issue is to calculate possible 
uncertainty metrics that could go into the schema.  

B. Metrics to Suppor the URREF Semantic Ontology 

For the metrics available in the Cursor on Target Schema, we 
seek uncertainty measures of confidence, accuracy, and 
timeliness, as related to uid, time, and point; respectively. 
 
• Credibility / Confidence: evaluates the ability to discern an 

object based on a known target. Classification is the 
target match, while identity is target allegiance. If targets 
are of known entities, it can be assumed that the targets 
not classified could pose an ID uncertainty. Using a 
Bayesian approach for this example, we determine the 
relative probability from the likelihood values of the 

object, versus of target clutter ℓO | c , where c j is for j = 1, 
..., n clutter types:  

PrO | c =  
[ ℓ O | C ]

 Σ c j ∈ C  [ ℓ O | c j ]
  (1) 

 
Using plausibility, uncertainty is everything unknown 
 

UL = 1 - PrO | c (2) 

 
• Timeliness: evaluates when the system knows enough 

information to make a decision versus when it was 
collected. For the purpose of this analysis we simulate 
the deadtime for an input time delay (TDi) for a decision 
i, as related to the user achieving a control decision [48]. 
Likewise, in the action selection requires time as 
modelled as an output time delay (TOi). The updated 
state-space representation is:  

 

 x
•(t) = − A x(t) + B u(t − TDi) 
 (3) 

 y(t) = C x(t − TOi) + D u(t) 
 

To determine the estimation parameters of A and B, as well 
as the output analysis of C and D, we model the importance 
of the information processing as related to the cognitive 
observe-orient-decide-act (OODA) functions. Uncertainty 
is defined as the decision time difference of arrival: 

 
 UT =  x(t − TOi) - x(t − TDi) (4) 
 
• Accuracy: evaluates how the real world track estimates 

from the measurements compare to the ground truth. For 
the purpose of this analysis, the real world is reduced to 
a specified track estimate xM, as related to ground truth 
xT. Using a root-mean square error, we have: 

 

     UL = (xM - xT)2 +  (yM - yT)2  (5) 
 



    Accuracy can be determined versus the ability to track a 
target exactly : 1 - UL. Other aspects could include track 
purity for track-to-track association [49] for situation 
awareness including: 

 
• Specificity: evaluates how much of the real world clutter is 

reduced such as reducing the false alarms. While we do 
not simulate, we can deduce from the track confidence. 
 

• Situation Completeness: evaluates how much of the real 
world the system knows. For the purpose of this analysis 
the real world is reduced to a specified region of space 
(the volume of interest, VOI) during a given time 
interval (the time interval of interest). 

C. Wide Area Motion Imagery Example 

For the ETURWG, a use case is available for the purposes of 
semantic investigation. WAMI has gained in popularity as it 
affords advanced capabilities in persistence, increased track 
life, and situation awareness, but it also poses new challenges 
[50, 51] such as low frame updates (timeliness).   

Leveraging developments from computer vision [52, 53, 54, 
55], methods are being applied as part of the ETUWG [27-29]. 
The persistence coverage affords such methods as multiple 
object and group tracking [56, 57, 58], road assessment and 
tracking [59, 60], contextual tracking [61, 62], and advances in 
particle filtering [59, 63]. Because of the numerous objects 
and their movements, there are opportunities for linear road 
tracking, but also there is a need for nonlinear track evaluation 
[64] such as the randomized unscented transform (RUT) filter 
[65] for accuracy assessment. These issues will be important 
for future work. 

We utilize the results from a WAMI tracker for track 
location accuracy, the pixels on target for classification for 
target identity (e.g. credibility), and the timeliness to make a 
decision. We are tracking four targets with an on-road analysis 
with a nominated target of interest, as shown in Figure 6. 
Vehicles turning off road are not considered as part of the user 
defined targets of interest. Note: the entire Columbus Large 
Image Format (CLIF) WAMI image collection has been 
presented in previous papers with discussions with the entire 
video data set  (see the ETURWG website). 
 

  
 

Figure 6 – WAMI Tracking. 
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Figure 7 – Target Accuracy 

Figure 7 plots the target accuracy (which is the inverse of 
the typical plots that show the target tracking error). Figure 8 
combines the track accuracy in a unified display plot showing 
the target confidence (uid) and the accuracy. The confidence is 
shown as solid lines and the timeliness presented as the black 
humps where the time intervals are shown as: orient (t = 2.5-
5), observe (t = 5-10), decide (t = 10-13) and act (t =13-18) 
time steps. 
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Figure 8 – Confidence-Accuracy-Timeliness Results. 

Using the above information, we combine the credibility 
/confidence, accuracy, and timeliness (CAT) for a semantic 
notion of fused uncertainty in Figure 9 (where the normalized 
values are UT = UC + UT + UA). Together, the combined 
uncertainty could be a ontology field in an updated CoT 
schema to give the user a quality assessment of a machine 
processed semantic representation of uncertainty. 

V. DISCUSSION 

Figure 9 shows a case for a unified uncertainty estimation and 
is meant for discussion. Given the choice to utilize the URREF 
ontology, there are issues associated with choosing an 
ontology representation that can work within a message 
passing schema.  If only one field was available, say ut, then is 



it appropriate to normalize the uncertainty and combine for 
purposes of the schema? For this case, only one target was 
nominated (like the CoT program), from which we see that the 
combined evidence supports a reduction in uncertainty; 
namely decreased track error, increased plausibility and hence 
ruling out the uid error, and the timeliness in decision making. 
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Figure 9 – Objective Semantic of Uncertainty. 

VI. CONCLUSIONS 

Characterizing the uncertainty is important in information 
fusion (IF) processes. Evaluation of IF systems presents 
various challenges due to the complexity of fusion systems and 
the sheer number of variables influencing their performance. 
Developing the operational semantics will include issues of 
representation, reasoning, and policy which need to be 
considered for command and control [66]. Representing 
uncertainty has an overall impact on system performance that is 
hard to quantify or even to assess from a qualitative viewpoint. 
The ETURWG technical considerations unearthed many issues 
that demand a common understanding that is only achievable 
by a formal specification of the semantics involved [67, 68].  

In the paper, we utilized the current URREF ontology in 
relation to an established schema (Cursor on Target) to support 
the development of a specific use case for wide-area motion 
imagery (WAMI) simultaneous tracking and identification. We 
also presented a visual analytic method for uncertainty metrics 
and analytics. Future work includes group tracking, activity 
analysis, hard-soft fusion, and contextual understanding. 

More specific requirements to evaluate a set of use cases 
and associated data sets designed by the ETURWG are 
accessible through our webpage [http://eturwg.c4i.gmu.edu]. 
Although it is clear that the URREF ontology is not a definitive 
reference for all types of information fusion activities, it has 
proven to be a discussion towards a common framework.  
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